Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(11): 8099-8106, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451218

RESUMO

Creating a high-frequency electron system demands a high saturation velocity (υsat). Herein, we report the high-field transport properties of multilayer van der Waals (vdW) indium selenide (InSe). The InSe is on a hexagonal boron nitride substrate and encapsulated by a thin, noncontinuous In layer, resulting in an impressive electron mobility reaching 2600 cm2/(V s) at room temperature. The high-mobility InSe achieves υsat exceeding 2 × 107 cm/s, which is superior to those of other gapped vdW semiconductors, and exhibits a 50-60% improvement in υsat when cooled to 80 K. The temperature dependence of υsat suggests an optical phonon energy (ℏωop) for InSe in the range of 23-27 meV, previously reported values for InSe. It is also notable that the measured υsat values exceed what is expected according to the optical phonon emission model due to weak electron-phonon scattering. The superior υsat of our InSe, despite its relatively small ℏωop, reveals its potential for high-frequency electronics, including applications to control cryogenic quantum computers in close proximity.

2.
Sci Rep ; 14(1): 7544, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555396

RESUMO

Terahertz polarimetric imaging, capable of capturing not only intensity profiles but also the polarization states of the incident pattern, is an essential technique with promising applications such as security scans and medical diagnoses. Recently, a novel approach for terahertz imaging has been proposed using a metasurface absorber that converts terahertz light into a temperature profile. However, polarization remains indistinguishable in the imaging process due to the isotropic geometry of the metasurface. To address this issue, this study introduces an all-dielectric, polarization-sensitive metasurface absorber and showcases its suitability for terahertz polarimetric imaging. Optical and thermal simulations confirm that the polarization dependence of our metasurface is translated into the thermal domain, allowing us to distinguish both intensity and polarization states in the incoming image. Additionally, we demonstrate that polarimetric imaging under general, elliptical polarization is attainable. This metasurface facilitates terahertz polarimetric imaging, eliminating the need for complex setups or bulky components, thereby reducing the form factor and enabling widespread use.

3.
Polymers (Basel) ; 12(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796775

RESUMO

A light-weight, flexible electromagnetic interference (EMI) shield was prepared by creating a layer-structured metal-polymer composite film consisting of electrospun nylon 66 nanofibers with silver films. The EMI shielding effectiveness (SE), specific SE, and absolute SE of the composite were as high as 60.6 dB, 67.9 dB cm3/g, and 6792 dB cm2/g in the X- and Ku-bands, respectively. Numerical and analytical calculations suggest that the energy of EM waves is predominantly absorbed by inter-layer multiple reflections. Because the absorbed EM energy is dissipated as heat, the thermal conductivity of absorption-dominant EMI shields is highly significant. Measured thermal conductivity of the composite was found to be 4.17 Wm-1K-1 at room temperature, which is higher than that of bulk nylon 66 by a factor of 16.7. The morphology and crystallinity of the composite were examined using scanning electron microscopy and differential scanning calorimetry, respectively. The enhancement of thermal conductivity was attributed to an increase in crystallinity of the nanofibers, which occurred during the electrospinning and subsequent hot pressing, and to the high thermal conductivity of the deposited silver films. The contribution of each fabrication process to the increase in thermal conductivity was investigated by measuring the thermal conductivity values after each fabrication process.

4.
Proc Natl Acad Sci U S A ; 117(29): 16856-16863, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632002

RESUMO

Recent advances in soft materials and mechanics activate development of many new types of electrical medical implants. Electronic implants that provide exceptional functions, however, usually require more electrical power, resulting in shorter period of usages although many approaches have been suggested to harvest electrical power in human bodies by resolving the issues related to power density, biocompatibility, tissue damage, and others. Here, we report an active photonic power transfer approach at the level of a full system to secure sustainable electrical power in human bodies. The active photonic power transfer system consists of a pair of the skin-attachable photon source patch and the photovoltaic device array integrated in a flexible medical implant. The skin-attachable patch actively emits photons that can penetrate through live tissues to be captured by the photovoltaic devices in a medical implant. The wireless power transfer system is very simple, e.g., active power transfer in direct current (DC) to DC without extra circuits, and can be used for implantable medical electronics regardless of weather, covering by clothes, in indoor or outdoor at day and night. We demonstrate feasibility of the approach by presenting thermal and mechanical compatibility with soft live tissues while generating enough electrical power in live bodies through in vivo animal experiments. We expect that the results enable long-term use of currently available implants in addition to accelerating emerging types of electrical implants that require higher power to provide diverse convenient diagnostic and therapeutic functions in human bodies.


Assuntos
Coração Auxiliar , Fótons , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio/instrumentação , Animais , Frequência Cardíaca , Camundongos , Fenômenos Fisiológicos da Pele , Transdutores
5.
Polymers (Basel) ; 11(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083478

RESUMO

The thermal conductivity (k) of poly(acrylic acid) (PAA) nanofibers, which were electrospun at various electrospinning voltages, was measured using suspended microdevices. While the thermal conductivities of the as-spun PAA nanofibers varied depending on the electrospinning voltages, the most pronounced 3.1-fold increase in thermal conductivity in comparison to that of bulk PAA was observed at the electrospinning voltage of 14 kV. On the other hand, a reduction in the thermal conductivity of the nanofibers was observed when the as-spun nanofibers were either thermally annealed at the glass transition temperature of PAA or thermally crosslinked. It is notable that the thermal conductivity of crosslinked PAA nanofibers was comparable to that of crosslinked bulk PAA. Polarized Raman spectroscopy and Fourier transform infrared spectroscopy verified that the k enhancement via electrospinning and the k reduction by the thermal treatments could be attributed to the conformational changes between gauche and trans states, which may be further related to the orientation of molecular chains. In contrast, hydrogen bonds did not contribute significantly to the k enhancement. Additionally, the suppression of k observed for the crosslinked PAA nanofibers might result from the shortening of single molecular chains via crosslinking.

6.
Sci Rep ; 9(1): 3026, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816257

RESUMO

The thermal conductivity enhancement of neat poly(vinyl alcohol) and poly(vinyl alcohol) (PVA)/cellulose nanocrystal (CNC) composite was attempted via electrospinning. The suspended microdevice technique was applied to measure the thermal conductivity of electrospun nanofibers (NFs). Neat PVA NFs and PVA/CNC NFs with a diameter of approximately 200 nm showed thermal conductivities of 1.23 and 0.74 W/m-K, respectively, at room temperature, which are higher than that of bulk PVA by factors of 6 and 3.5, respectively. Material characterization by Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis confirmed that the thermal conductivity of the PVA/CNC NFs was enhanced by the reinforcement of their backbone rigidity, while that of the neat PVA NFs was attributed to the increase in their crystallinity that occurred during the electrospinning.

7.
Int J Biol Macromol ; 96: 384-391, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28013005

RESUMO

We measured the thermal conductivity of Araneus ventricosus' spider dragline silk using a suspended microdevice. The thermal conductivity of the silk fiber was approximately 0.4Wm-1K-1 at room temperature and gradually increased with an increasing temperature in a manner similar to that of other disordered crystals or proteins. In order to elucidate the effect of ß-sheet crystals in the silk, thermal denaturation was used to reduce the quantity of the ß-sheet crystals. A calculation with an effective medium approximation supported this measurement result showing that the thermal conductivity of ß-sheet crystals had an insignificant effect on the thermal conductivity of SDS. Additionally, the enhancement of bonding strength in a glycine-rich matrix by atomic layer deposition did not increase the thermal conductivity. Thus, this study suggests that the disordered part of the glycine-rich matrix prevented the peptide chains from being coaxially extended via the cross-linking covalent bonds.


Assuntos
Glicina , Seda/química , Aranhas/química , Condutividade Térmica , Animais , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica em Folha beta
8.
Nanoscale ; 8(3): 1314-21, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26681551

RESUMO

We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. The V-doped ZnO NSs were synthesized to overcome the inherently low piezoelectric properties of intrinsic ZnO. Ferroelectric phase transition induced in the V-doped ZnO NSs contributed to significantly improve the performance of the PENGs after the poling process. Consequently, the PENGs exhibited high output voltage and current up to ∼32 V and ∼6.2 µA, respectively, under the applied strain, which are sufficient to directly turn on a number of light emitting diodes (LEDs). The composite approach for PENG fabrication is scalable, robust, and reproducible during periodic bending/releasing over extended cycles. The approach introduced here extends the performance limits of ZnO-based PENGs and demonstrates their potential as energy harvesting devices.

9.
IEEE Trans Biomed Eng ; 63(1): 158-67, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26468905

RESUMO

GOAL: Micromagnetic stimulation using coils sufficiently small to be implanted has been suggested as a potential method to overcome the limitations of electrical stimulation. We investigated the temperature increases in the brain implanted with planar coils. METHODS: We conducted computational simulations on the thermal effects of implantable magnetic stimulation in a brain model using finite-element analysis, by varying geometric parameters of planar spiral coils, and repetitive stimulation pulse patterns. RESULTS: It was revealed that the temperature increase in the brain can be controlled by a careful design of coils to implant. The coil diameter greater than 8 mm was required to induce a temperature rise in the brain of less than 1 °C. If the coil diameter was larger than 10 mm, the subsequent temperature rises in the brain tissue was maintained consistently at about 0.24 °C or lower. CONCLUSION: Selection of the number of coil turns must rely on tradeoffs between the required current and voltage that the implanted source can generate, as the required voltage increases while the required current decreases with increasing number of coil turns. Additionally, the coil insulation with a thickness of a few micrometers was found to suppress the temperature rise in the brain effectively. SIGNIFICANCE: Although these simulations employed only one threshold value of 10 V/m, which is rather on the lower end of stimulation threshold, the simulation results are expected to serve as guidelines for designing planar coils to be implanted in the brain for magnetic stimulation.


Assuntos
Encéfalo/efeitos da radiação , Simulação por Computador , Modelos Neurológicos , Estimulação Magnética Transcraniana , Encéfalo/fisiologia , Eletrodos , Desenho de Equipamento , Análise de Elementos Finitos , Temperatura Alta , Humanos
10.
Biosens Bioelectron ; 74: 1011-5, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26264268

RESUMO

While sensors that allow for high-throughput enumeration of microorganisms within drinking water are useful for water quality monitoring, it is particularly challenging to accurately quantify microorganisms that are present in low numbers (<100 CFU/mL) in a high-throughput manner. Negative dielectrophoresis (nDEP) is typically utilized in DEP-based cell focusing methods; however, due to its low conductivity, drinking water cannot be analyzed by this approach. Here, we report a positive DEP (pDEP)-based Escherichia coli detection system that is integrated with a focusing and sensing electrode. By incorporating a passivation layer, we avoided issues with adhesion of E. coli to the electrode, and achieved efficient cell focusing under high flow rate conditions (1500 µL/h). The resulting focused E. coli cells were then trapped on the sensor electrode, resulting in changes in impedance. The proposed system was evaluated using four different E. coli populations (150-1500 CFU/mL). We successfully enumerated populations as low as 300 CFU/mL within 1 min, and the signal variation was 1.13±0.37%. The device introduced in this study provides the basis for the development of portable, highly sensitive microorganism sensors that enable rapid detection of bacteria in drinking water.


Assuntos
Carga Bacteriana/instrumentação , Separação Celular/instrumentação , Água Potável/microbiologia , Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Poluentes da Água/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem
11.
ACS Nano ; 8(10): 10844-50, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25265473

RESUMO

We present a method to develop high performance flexible piezoelectric nanogenerators (NGs) by employing Li-doped ZnO nanowires (NWs). We synthesized Li-doped ZnO NWs and adopted them to replace intrinsic ZnO NWs with a relatively low piezoelectric coefficient. When we exploited the ferroelectric phase transition induced in Li-doped ZnO NWs, the performance of the NGs was significantly improved and the NG fabrication process was greatly simplified. In addition, our approach can be easily expanded for large-scale NG fabrication. Consequently, the NGs fabricated by our simple method exhibit the excelling output voltage and current, which are stable and reproducible during periodic bending/releasing measurement over extended cycles. In addition, output voltage and current up to ∼ 180 V and ∼ 50 µA, respectively, were obtained in the large-scale NG. The approach introduced here extends the performance limits of ZnO-based NGs and their potentials in practical applications.

12.
Science ; 328(5975): 213-6, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20378814

RESUMO

The reported thermal conductivity (kappa) of suspended graphene, 3000 to 5000 watts per meter per kelvin, exceeds that of diamond and graphite. Thus, graphene can be useful in solving heat dissipation problems such as those in nanoelectronics. However, contact with a substrate could affect the thermal transport properties of graphene. Here, we show experimentally that kappa of monolayer graphene exfoliated on a silicon dioxide support is still as high as about 600 watts per meter per kelvin near room temperature, exceeding those of metals such as copper. It is lower than that of suspended graphene because of phonons leaking across the graphene-support interface and strong interface-scattering of flexural modes, which make a large contribution to kappa in suspended graphene according to a theoretical calculation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...